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SECTION 1
INTRODUCTION

The technique that has evolved from this research effort is
called HIM which stands for Hybrid lterative Method. It is the
third generation of a technique that was initially researched
when Dr. G. A. Thiele was with the Ohio State University
ElectroScience Laboratory. This evolution is described below.

Starting in 1979, Kim and Thiele developed a hybrigd AS-MM
technique (asymptotic moment-method technique) to find the
induced currents on the surface ot scatterers in the intermediate
frequency region [1}]. These induced currents consisted of two
parts: an "optics" current similar to (but not the same
as 26 X Hi); and a "correction" current which was the ditference
between the optics current and the true current. The correction

current was obtained via the moment method.

In 1983 and 1984, Kaye, Murthy and Thiele (2], (3]
significantly improved on the AS-MM work by eliminating the
moment method regions thereby making the method potentially
applicable to large scatterers as well as ones of modest size.

In the second generation work by Kaye, Murthy and Thiele, the
magnetic field integral equation (MFIE) was reduced to a sequence
of integral equations for both the "optics" currents and the
"correction" currents, each of which is solved by iteration. Un
the other hand, in Kim and Thiele [1], the "correction'" currents
were solved by the moment method which tends to limit cthe
electrical size of the object that may be considered. The secona
generation work, then, was a purely iterative technique wherein
all the integral equations (tor both the optics currents and the
correction currents) are of the same torm and are simiiarly

solved via iteration.




In 1985 and 1986, Murthy, Hill and Thiele (4], [5] evolved
the third-generation technique, which is the present technigue
and which is described in the next section. This third-
generation technique is called HIM tor Hybrid Iterative Method.
In HIM, we incorporate the correction currents into the ansatz
for the iterative scheme itself so that there is only one current
to iterate. Thus, the iterative solution proceeds by taking the

previously iterated current and using it as the "new" current to
be improved upon. Typically, ten iterations is sufficient to
obtain a converged correct current. The second- and third-

generation techniques were mostly supported by KRADC/Hanscom.

The salient features of the hybrid-iterative method (HIM)
may then be stated in the tollowing way. HIM is an iterative
algorithm to solve MFIE (magnetic field integral equation) tor
induced surtface currents on a scatterer. Lkvery lterative scheme
must be started with an initial guess. The better the initial
guess, the faster the method converges. This initial guess must
be obtained from a knowledge of the physics of the scattering
process to the extent it is known. Thus, in HIM, the physics ot
the scattering process is incorporated into the solution process
at the outset to the extent it is possible, in the form of an
initial guess for the current on the shadow side. This results,
directly, in the reduction of CPU time. It is to be noted that
the iteration method [2], [3] is a special case of HIM in that it
takes the shadow-side current tc be zero. For some scattering
geometries, such a crude initial guess may not be good enough to
warrant a converged soluticn. In HIM, the solution always

converges when the initial guess is other than zero.

In Section II, we develop the integral equations tor HIM and
discuss their solution by iteration. 1In Section IIl, we present
theory relevant to the initial estimates ot the shadow-side
currents tor both smooth and edged bodies. Section lv presents
calculated results using the theory developed in Section 1.

Both edged bodies, exempliftied by a square cylinder and smooth
2
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bodies, exemplified by circular and elliptic cylinders are
considered. Section IV also presents our results obtalned on the
Cray X-MP. In addition, ogival cylinders which involve bpboth
edge- and smooth-surface diffraction, and hence constitute a
stricter test of the method, are also considered. Section V
contains the summary of the technique and points out further

avenues of research.




SECTION 2
GENERAL HIM THEOUKY

2.1 MAGNETIC FIELD INTEGRAL EQUATION

Consider a perfectly conducting body illuminated by a plane
wave. The induced surface current density on the body at an
observation point P, as shown in Figure 1, can be computed trom
the MFIE:

J(R) = 20 x A, (R) + 2n x L{J] D
where the operator L is defined by

L{3) = [ J(R") x ¥'G(r) ds' . (2)
L

The surface of the body is denoted by I and K and R' are the
observation and source point position vectors, respectively,
onfand r = |R - R'| . The prime on the gradient operator
indicates that the differentiation is performed on the source
coordinates. The bar through the integral sign is used to denote
the principle value integral over L. at is the incident magnetic
field vector and n is the outward unit normal to the surtace

at R. G(r) is the tree-space Green's tunction given by

e~JBT
G(r) = (3)
4ny
for the three-dimensional problem and by
G6(r) = — #{? (sr) (4)

43
for the two-dimensional problem. Héz)(sr) is the zero-order
Hankel function of the second kind and 8 is the free space

propagation constant. The time dependence is taken to

be exp(jwt) and is suppressed throughout.

(v .
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Figure 1. Scactering by a perfectly conducting Dbody.
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2.2 CURRENTS

The first step in solving the MFIE tor the induced surtace
current density J(R) is to divide the total surtace ¢ of the boay
into 21 and Zs, which represents the lit and shadowed regions,
respectively. The dividing line between these two regions is tnhe
geometrical optics shadow boundary which is detined as the locus

of points satisfying u n = 0, where u is the unit vector in the

direction of propagation of the incident tietd. Then J(R) can be

expressed as follows:
IR = 38R + (1 - ISR (5)

where §=1 if R ¢ t* and 6=0 if R ¢ 5. Eq. (1) can now be

rewritten as
I(R) = 2n x R(R) + 2n x L{J*) + 2n x L{I%) . (6)

In the notation used in Eq. (6) and in subsequent equations, the
surface of integration is identified by the superscript on the
current density. We now write out Eq. (6) explicitly

for R e t* and R ¢ £S:

I5(R) = 2n x (R + 2n x LIJ*) + zn x L|I8) (7)

ISR

2n x A (R + 2n x L{J*) + 2n x L{JS) (%)

The problem of solving for the induced surface current
density has now been transformed into one of solving Egqs. (7) and
(8) for 3 and 3%. we compute these currents in sequential

fashion in the following way.

First, let JE be an estimate of shadow current. For edged
bodies like the square cylinder, this current is obtained trom
the wedge diffraction theory. For smooth bodies like circular or
elliptic cylinders, this current is obtained using Fock theory.

6
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A detailed discussion of determining jE will be considered in

Section III. Thus,

s s
3 JE (9)
Substituting Eq. (9) in Eq. (7) and noting that the current on
the lit side would now be an approximation to the true current

and denoting this zeroth order approximate current by Jé,
LR =20 x B(R) + 2n x LIIY) + 2n x LT} (10)

This current is a significant improvement over the classical
physical optics (PO) current since it takes into account mutual
interaction of current on both lit- and shadow-regions in
addition to the geometrical optics (GO) field.

A shadow-side zeroth order approximate current, Jg, is now

defined by substituting 3t = Jé in (8):
IS(R) = 2n x B (R) + 2n x L[IX] + 2n x L(3F) (11)

In this expression, the main contribution of the second term on
the right-hand side will be approximately -2n x ﬁi(R) Lo cancel
the first term. The Jg obtained trom ky. (11) would be closer to
the true current than our initial guess Ji. Indeed, the only
inaccuracy incurred being that through the approximate value

taken for the lit-side current.

Now that an approximation to the shadow-side current better
than JE is available, the next higher-order current on the litc
side may be obtained. This lit-side current may be used to
further improve the shadow-side current. Thus, higher-order
currents may be obtained until the desired accuracy is achieved.
The integral equations for the nth order currents may be derined

as follows:




[ .

4
IR

2n x A (R) + LIIE) + L35 ;) (12)

ISR 2n x A (R) + L[Jﬁ] + L[33) (13)

Jz is the solution of Eq. (11).

In the iterative technique described in an earlier paper
[2], the "optics" currents were improved upon by the addition ot
correction currents. The technique described here is
mathematically equivalent to the correction current ansatz ot
that iterative technique and at the same time is simpler trom the

programming point of view.

2.3 CONVERGENCE CRITERION

We now give a criterion for the convergence of the sequence
of integral equations., This criterion is based upon how
accurately our solution satisfies the MFIE. Using Equation (5),

we define,
IR =63 R+ Q-0 AIRIED) (14)

*
Then the currentc, Jn(R), is obtained by substituting Jn(R) in
MFIE. That is,

* - > ~ >
Jn(R) = 2n x Hi(ﬁ) + 2n x LLJD(K)] (19)

If Jn(R) were to be exact, then }n(ﬁ) z jn(R). The "ditference"
between Jn(R) and Jn(R) is a measure of the agegree of accuracy or
the solution after n-orders of iteration. WNoting that the
currents are specified as a set ot N points, the average

*
error, e, between Jn and Jn is defined to be,




e e s

K L, (16)

€ = .
n,i n,i

1
N i

N
L

1

If the error ¢  is less than a preselected value, the sequence
may be considered to have converged.

Thus, the hybrid-iterative method (HIM) computes the
currents on the lit and shadow regions in sequential tashion
starting with an initial estimate tor the shadow current. All
the integral equations are ot the same form and are, in tact,
Fredholm integral equations of the second kind. Hence, all these
integrals may be solved by iteration as discussed in {2, [3].

T ——————— ———




SECTION 3
INITIAL CURRENTS

An initial estimate of the current on a scatterer with
surface discontinuities like a square cylinder is obtained from
the knowledge of currents on a wedge. For a scatterer with
smooth surface, Fock theory may be used to obtain the initial

estimate of the shadow-side current,.

3.1 SHADOW-SIDE CURKRENT ON A WEDGE

Consider the wedge shown in Figure 2 illuminated by a k-
plane wave. When the angle of incidence ¢i is such that che
shadow boundary is not "close" to tace B, the current on tace 5

is given by [5]

H ; -
3; = -4 2 K_(x,) e”JB tg, O & p < = N (17)
N 0 < ¢. ¢ (n=-1)n - —
1 10

A .2
K (x) =/ 1 ed® 1 eIt 4r
n X

Xg = Y ZBpB (cos I+ cos —i)/sin L

n n n
Hy, = amplitude of the incident magnetic field
p = distance from the edge
n=(2-g)
L
a = interior wedge angle.

When the angle of incidence is such that a shadow boundary 1s
close to Face B, the current is given by,

10
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3; = —2HO[B K_(Bxg) + sgn(c0tw+) K_(xB+)] e~J80 EB )
0 < p ¢ = (18)
(n-1)n - LLLIg: $.< (n-1)nw

1 1
where B = (2 - 1)
n
Xp = Y B8p/2 2n cot
1] = (TT ¢i)/2n

Thus, Equations (17) and (18) express the currents on the
shadow side of a wedge in closed form. These expressions involve
the well-known moditfied Fresnel tunctions, K_(x) (6], and are
easy to compute. Figure 3 presents shadow-side currents on wedge
computed using the above expressions as well as the exact
solution obtained trom the eigentunction solution. Note that the

agreement is excellent.

These currents on the wedge may readily be used to obtain an
initial estimate of the shadow-side current on a square
cylinder. Consider the geometry of a square cylinder shown in
Figure 4. Faces 2 and 3 are in the shadow region. Faces 1 and 2
constitute a wedge illuminated with the angle of incidence
being ¢i,B' The current on Face 2 may be approximated by the

current on a corresponding wedge with a = /2 and i = ¢, g- In

i,
a similar fashion, the current on Face 3 also may be

approximated.

3.2 SHADOW-SIDE CURRENT ON A SMOOTH BOvLY

An estimate for current on the shadow side ot a smooth
convex cylinder may be obtained by using Fock theory |4].
Reterring to Figure 5, Qi and Y are points of grazing incidence
and Yo Ls the observation point where current is to be tound.

The field at Q; is due to two creeping waves launched trom Qp anag
12
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Figure 4. Geometry for a square cylinder.




Figure 5.

Geometry for a smooth convex cylinder.
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Qp and traveling the distance of ty and t, on the surtace,
respectively. Then, for TE polarization, using the generalized

Fock theory [7}, [8], one obtains

i(ap = Aape T gGep + B @ T 2 gley (19)
where

&y.2 = g:: %él')- de! (20)

m(t') = [spg(c'>/z]”3 (21)
Q

€y 5 = {21,2dc (22)
:_]'_Ei

g(g) = e 2 L gy etdft _dt (23)

/i ¢ w%(t)

o (t') is the radius of curvature at t' and the Airy tunction

wy(t) and the contour "c¢" are defined in [4].

Once the magnetic field is found, the current on the surtace

is determined from
J=nxH. (24)

For the specific case of a circular cylinder excited by a TE-
plane wave, the initial estimate for the shadow-side current, JE,

is given By

J§=nxﬁ (25)

with B being given by

17
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H = zHO{e g(E]) + e g(iz)} (206)
where c
ga y1/3 "1
E] = (=) /31 .
2 a
o
- (213 2
2 a
a = radius of circular cylinder. (27)

Using Equations (25) to (27), Fock current in the shadow
side has been computed for a circular cylinder of radius 3.2x and
is shown in Figure 6. Notice that expressions given here are
valid only for TE polarization. Similar expressions can be

easily obtained for TM polarization.
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SECTION 4
NUMERICAL EXAMPLES

In this section, we illustrate the technique described 1in
earlier sections. We deal with scatterers with surface
discontinuities as well as smooth surtaces. Thus, 1) scatterers
with edges are exemplified by a square cylinder; 2) scatterers
with smooth surfaces are exemplified by circular and elliptical
cylinders; and 3) scatterers with a smooth surface joined to an

edge are exemplified by the ogival cylinder.

Before the theory presented in earlier sections can be used
to compute the induced currents, some numerical aspects must be
considered. For scatterers with edges, special attention must be
paid to evaluating the integrals for current very close to the
edge. This analysis has been dealt with elsewhere [2], [3] and
will not be repeated here. For scatterers with smooth surtfaces,
it is necessary to evaluate integrals wherein the integration and
observation points may coincide. In such caser, the Green's
function becomes singular and one must oasider the principle
value ot the integral. For two-dimensional geometries, however,

it can be shown {2], [3] that the integrands nave a finite lLimic.

The following results will pbe tor zeroth ordger, rirst-order
and second-order currents. [t is necessary to understand what
this means. The zeroth-order currents are defined by tqgs. (10)
and (11). The zeroth-order currents are themselves obtained by
iteration, say ten iterations. Once a converged zeroth-order
current has been obtained according to the criterion of Eq. (16),
the zeroth-order current, is used in Egqs. (12) and (13) to obtain
the first-order currents via iteration, etc.

4.1 SQUARE CYLINDER

Two examples are presented here. In both cases, the size ot
the cylinder is the same, viz, w = 3.7\. However, the angles ot
incidence, 4, are ditferent. The case, o = 1150, has been
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dealt with in an earlier report [3]. We study the same case here
using our hybrid-iterative method (HIM). It was necessary in |3}
to compute four orders of correction currents to obtain a
sufficiently accurate result. With the HIM, zeroth order
currents themselves give a sutticiently accurate solution. we
also present the tirst-order currents tor comparison. Figures 7

to 11 show the results for w = 3.7x and ¢; = 1159,

We also consider the case when $; = 959, Note that in this
case, Face 2 of the square cylinder is almost, but not quite, in
the visible region. As can be seen from the final result, the
current on this face is quite appreciable and may not be
neglected initially as was done in the iterative technique [2],
[3)]. Figures 12 to 16 show results corresponding to this case.
In this more demanding case it was necessary to compute up to the

second-order currents.

4.2 SCATTERERS WITH SMOOTH SURFACE

In [2], Kaye, Murthy and Thiele used the iterative method
(IM) to compute the surface currents on a circular cylinder ot
radius 3.2)x. These computations include the tirst-order
correction current and are characterized by a ripple. tor the
same cylinder, we computed induced currents using the HIM. These
results are presented in Figures 17 to 19. Note that there is no
ripple and that the agreement between our results and the exact
eigenfunction solution is excellent. Furthermore, we needed to
compute only up to the zeroth-order currents. After zeroth
iteration, HIM yielded an error of €5 (HIM) = 0.0018. The VAX
CPU time taken is 2 minutes and 18 seconds. For the same case,
with iteration method, €5 (IM) = 0.054 and €9 (IM) = 0.047.
Thus, even after the first-order calculation, the average error
for IM is significantly larger than that for HIM. The CPU time
required for IM up to first-order calculations is three minutes
and 45 seconds. All computations were carried out on a VAX
11/780.
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In order to demonstrate that our technique works well tor
"small'" bodies, we also considered a 0.2Z2) radius circular
cylinder in [Y]. We computed both zeroth-order and tirst-order
currents with excellent agreement between our results and the

exact results obtained using the eigentunction solution.

The computer code we have written 1s general and may be used
to compute the induced currents on scatterers with an arbictrary
convex cross-section. To demonstrate this generality, we have
also considered an elliptic cylinder as shown in Figure 20 with
semi-major and semi-minor axes being 1.5) and 1.0x,
respectively., Our results are compared with those of the method
of moments (MM). A result is shown in Figure 21. Note the
excellent agreement between the results obtained with the MM and

and with the hybrid-iterative technique.

4.3 SCATTERERS WITH A SMOOTH SURFACE JOINED TO AN EDGE

The ogival cylinder is an example of a smooth surtace joined
to an edge. To illustrate the application of HIM to the ogival
cylinder,we will consider a 3) long (edge-to-edge) ogival
cylinder with an 809 interior "wedge" angle at each edge. Figure
22 shows the current on one side ot the ogival cylinder tor a
plane wave incident at 90%., The current is of zeroth order and
the agreement is seen to be excellent. The traveling wave, ror
which the ogive is well-known, would be predicted by the current
in Figure 22. Figure 23 shows the ogival cylinder iiluminated
broadside (i.e., at 09). This is a more ditficult case than
with 900 (edge on) incidence. Thus, second-order currents are

required to obtain excellent agreement.

4.4 VERY LARGE SCATTERERS

For the purpose of adapting the HIM to ctreat scatterers that
are electrically large, the surface current is considered to

consist of two components: the physical optics current and the

35




Figure 20. Geometry for an ellipcic cylinder with semi-
major axis "a" anq semi-minor "p", $; = 9uo
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nonuniform current. The physical optics current is readily
determined. Since the nonuniform current is induced by the
diffracted field at cthe surface, it decays relatively quickly
from the point of diffraction. Thus, though the scatterer is
large, the region over which the nonuniform current 1s unknown 1s
relatively small. This is the basic principle behind the
reformulation ot HIM for large bodies. Additionally, the
integrals involved are in a form suitable tor evaluation by the
stationary-phase method; this form is used wherever teasible.
Thus, numerical integration is used to the Least extent
necessary. We give the specific tormulation tor a circular
cylinder in [10], though the method itself is more general than

presented there.

Figures 24 and 25 illustrate the foregoing principles by
presenting a comparison of the current between the exact
eigenfunction solutions and the calculated results obtained by
use of this reformulated scheme for the circular cylinder with
radii equal to 25 and 80 wavelengths. The stationary-phase
evaluation, in the result shown, only includes the endpoint
contribution because the stationary points are outside the
integration path. The CPU time required to run the result ot
this 25-wavelength-radius cylinder on a VAX 11/730 computer 1is
approximately eight minutes; while the CPU time required tor a
cylinder with an 80-wavelength radius is approximateliy 40

minutes.

The large body formulation tor tIM is adaptable tor use on a
super computer like th Cray X-MP. oun May 1Y, 20, and 21, 1986,
we ran our program for the large cylinder on the Cray X-uP at che
Cray facility in Minneapolis under the sponsorship ot Cray
Research. Some rewrite of our program was necessary Lo permit
the compiler to vectorize the code. The results are presented in
the table which follows. Note that for the 80X cylinder the VAX
time was about 2,400 seconds and that on the Cray X-MP, atter
rewrite and vectorization, the CPU time was but 6.17 seconds.
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RCS
COMPUTER TIMES FOR LARGE CIRCULAR CYLINDERS

RADIUS (1) ~C(2) vax® CRAY X-MP™ KATIU
10 63 60 0.37 162
25 157 480
80 500 2,400 6.17 389

120 750 10.5

160 1,000 15.3

200 1,250 20.5

240 1,500 26.0

300 1,880 34.8

400 2,500 50.6

440 2,760 5649

TIME IN SECONDS
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While this ratio of 389 to 1 was not the largest ratio the Cray
Applications Group had ever seen, it was in the class of very
large ratios that one can achieve in going from a VAX to a
Cray. They viewed a ratio of 100 or over as very good.

Note that the small CPU times indicate that the hIM could be
used as an interactive design tool. For example, one could
design any wing profile and any radar trequency interactively

using this HIM approach.

Note that we used here the (classical) circular cylinder
shape because we have an exact solution against which to
compare. Cylinders ot other cross section shapes would have

similar running times,

4.5 PERFECTLY CONDUCTING CUBE

Figure 26 shows the geometry for a perfectly conducting
cube. Figures 27-32 show the H-plane and E-plane bistatic
scattering pattern for cubes that are 0.75x, 1.5) and 3.0X on a
side, respectively. In all cases, agreement with experimental
data furnished by RADC/Hanscom is seen to be quite good. Also
included are figures 33-36, which describes the surface current
densities on the cube faces. Figure 33 describes the magnitude
" of the z-component of the initial current on the side face, while
figure 34 shows that same current aften imposition of the
M.F.I.E. It is seen that the composite effects of slope
diffraction and vertex diftraction, previously ignored, have been
introduced. Figures 35 and 36 describe current components
initially assumed to be zero. After imposing the t.F.l.E., it 1is
seen that a much better, non-zero approximation results.

4.6 TM CASE FOR SQUARE CYLINDER ]

Our results in Section 4.1 for the square cylinder were tor
the TE case. Clearly, to do the cube in Section 4.5 it was
necessary to be able to calculate TM currents as well as TE
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currents. Here, in this section, we will briefly present some

results for TM currents on a square cylinder.

Figure 37 shows the magnitude of the fourth-order current
a square cylinder 3.193) on a side. The incidence angle is
o; = 1350 (see Figure 4). Figure 38 shows the phase. Figures
and 40 show similar results except that the incidence angle is

1200,
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Figure 26. Note: <y = 90® Backscatcer
Yy = 2709 rorwarda scatter.
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SECTION 5

SUMMARY

A new iterative method has been presented tor computing the
current induced by plane wave excitation on conducting bodies of
arbitrary shape. In this method,the scattering body is divided
into lit- and shadow-side regions separated by the geometric
optics boundary. An MFIE is written for each region. Each MFIE
is solved by iteration (i.e., method of successive
approximations). In order to accomplish this, it is otcen
necessary to have an initial estimate of the shadow-side
current. This estimate is obtainea from known physical
scattering phenomena (e.g., edge dittraction theory or ftock
theory). Hence, the method is called a hybrid-iterative mecthod
(HIM) .

" The HIM is well-suited tor use on a super computer Like the
Cray X-MP. Results were shown for 2-dimensional objects whose
size varied from Q.61 to 440x, all with CPU times under one
minute, on the Cray. With such speed, it is possible to have a
computer code with which interactive Aero/RCS tradeotfs can be

evaluated.

The HIM method is a current-based approach to electro-
magnetic scattering. In a current-based method, the scattered
field is obtained from the induced currents. This can be
contrasted with the field-based approach (e.g., GTD) wherein the
scattered field is obtained trom the incident tield via ray
tracing without the necessity of explicitly determining the
current. For modeling large complex geometries, it is believea
that the current-based approach is better than the tield based’
approach because one does not need tCo trace, perhaps, hundreds oL
rays and one does not need to describe geometrical surtfaces to

high precision.

The HIM approach to electromagnetic sScattering has evolvedg
from eight years of research sponsored primarily by KADC/Hanscom
59




with early support tfrom ONR as well as lesser support trom WPALSB
and Rockwell Sciences Center. The merits of HIM have been.wekl-
demonstrated for perfectly conducting uncoated two-dimensional
scatterers. A number of fundamental problems remain to be
researched, however, before the technique can be used by the KCS
community to model coated/partially coated, three-dimensional

shapes.
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of
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RADC plans and executes research, development, test and selected
acquisition programs in support of Command, Control, Communications
and Intelligence ( cr ) activities. Technical and engineering support within
areas of competence is provided to ESD Program Offfices (POs) and other
ESD elements to perform effective acquisition of cr systems. The areas
of technical competence include communications, command and control,
battle management, information processing, surveillance sensors,
intelligence data collection and handling, solid state sciences,
electromagnetics, and propagation, and electronic, maintainability, and

compatibility.
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